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ANDANTE AI for New Devices And Technologies at the Edge

1.Implement and benchmark several In-Memory Computing solutions, 
leaveraging respectively  OxRAM, SOT-MRAM and FeFET 
technologies.

2. Deliver hard macros and IPs to future Edge AI hardware accelerators

E. Esmanhotto et al., Advanced 
Intelligent Systems (2022)

Motivations
• I n data-centric applications, such as AI, memory accesses consume a large part of the total energy dissipation. This 

is why doing computations in-memory is one of the key solutions for reducing power at the edge
• Furthermore, as the number of neural network parameters increases over time, relying on dense non-volatile 

embedded memories avoids duplicating memories and loading a considerable number of weights at each start up. 

Main Goals

OXide-based resistive RAM (OXRAM) Analog IMC Ferroelectric FET (FeFET) 
Based Mixed-Signal IMC Accelerator

Building Blocks of FeFET-based Analog In-Memory Computing

Spin-Orbit-Torque Magnetic RAM (SOT-MRAM) for analog in-memory compute

Objectives:
• enable multi-level abilities of OXRAM technology
• demonstrate the feasibility of analog matrix-vector multiplication

OxRAM-based design guidelines for analog in-memory compute
• Drastic limitations of pure crossbar array for RRAM are well known (sneak leakage 

path): need for an access transistor. 
• Unitary bitcells are thus 1T1R cells, composed an OxRAM and a transistor
• In order to process analog matrix-vector multiplication, the bitcells array has to be 

arranged with orthogonal Bit Line (BL) and Source Line (SL). Voltages are applied 
at the input and currents are read at the output.

• In a multilevel approach, the constraints on the access transistor On Resistance 
(RON) are high. Since the LRS range is narrow and the resistance values low, the 
RON needs to be particularly low, which implies to have a wide and short 
transistor. The resulting cell size is 0,288 µm x 0,741 µm = 0,213 µm².

• The memory density is defined by the number of levels which can be stored in an 
OXRAM. Because of relaxation mechanisms and process variability, a smart 
multilevel programming technique must be employed: 8 levels are experimentally 
demonstrated, leading to a density of 14 bits / µm²

Conclusion and future work

• OXRAM technology is a promising technology for implementing analog 
matrix-vector multiplication in heavily quantized neural networks

• The stable storage of 8 levels per cell (i.e. 3b) was experimentally 
demonstrated

• An analog IMC macro was designed and will be electrically tested

Writing operations
(HRS: High Resistive State; LRS: Low Resistive State)

Resistance ranges

1T1R bitcell array

Bitcell layout (3b/cell)

Memory device inserted
in the back-end of line

Experimental demonstration of stable 8-level storage

Goal: 
demonstrate an analog in-memory compute (AiMC) array using 
SOT-MRAM devices performing matrix vector multiplications (MVMs)

Objectives :
Device level scorecard for benchmarking AiMC
Full circuit-level array design

A traditional deep neural 
network (DNN) layer can be 

mapped on an analog array to 
perform the 

multiply-accumulate (MAC) 
function in a very energy and 

area e�cient way

The analog MAC is 
performed by summing 

currents of di�erent (resistive) 
weights.

To be energy e�cient, this 
requires the device 

resistance to be very high (in 
MΩ range).

SOT-MRAM is a 3-terminal magnetic 
memory with decoupled read/write path. 

It presents area and low-leakage 
advantages over conventional SRAM, 
while IGZO DRAM would still require 

periodic refresh, thereby hindering the 
objective of achieving low-energy 

operations for ML accelerator.

Conclusions and future work:
• Design has been taped out 

manufacturing is ongoing.
• Future reports will disseminate array 

characterization.

AiMC Key Components:
• Compute Cell: SOT-MRAM-based with read and write transistors
• Digital to Analog Converters (DAC): 512 DACs organized into 8 blocks 

of 64 DACs per block
• Analog to Digital Converters (ADC): Successive Approximation ADC 

(SAR ADC) presents energy-e�cient structures having small area

Memory Devices for AiMC

DNN layer AiMC architecture

SOT based compute cell with read and write transistors

AiMC with SoT-MRAM:
• Circuit design supporting MVM core with SOT devices comprising 

the compute cell, DAC and ADC
• implemented in TSMC 40 nm FEOL process and a combination of 

TSMC-imec layers for BEOL. 
Top Level GDSII

Objectives :
• To demonstrate the operational capability of FeFETs as e�cient memory cells within AiMC architecture.
• To address latency and power consumption challenges in deep learning , particularly in IoT devices.
• To deliver a full IP design showcasing its capability in executing matrix-vector multiplications (MVMs).
• To ensure a robust and functional AiMC architecture conducive for e�cient machine learning inference.

FeFET as Memory Cell: FeFETs in LVT and HVT states serve as pivotal 
memory cells enabling binary storage—essential for in-memory 
computations.

3-bit Flash ADC: It is crucial for sensing and quantizing the 
Multiply-and-Accumulate (MAC) operations, bridging analog 
computation with digital readout.

Layout of the Segment: It exemplifies a segmented architecture, housing 
an 8x8 FeFET array connected to a degeneration resistance, to minimize 
power consumption and mitigate current variability of the FeFET.

Layout of the Column Segment:
It aggregates eight 8x8 
1FeFET1R segments, each 
connected to a 3-bit Flash ADC. 
This setup fosters e�cient MAC 
operations and ensures a 
precise analog to digital 
transition.

FeFET Mixed Signal Processing Element:
The FeFET crossbar coupled with digital interfaces like bitline 
and wordline controllers, input generator, and adder trees, 
enables a smooth analog to digital transition in deep learning 
computations. 

Conclusions and Future Work:
• The FeFET-based AiMC architecture exhibits promise 

towards e�cient and reliable matrix-vector multiplication in 
deep learning computations.

• The described macro has been taped out, and measured.
• Characterization of the array is to be disseminated in future 

reports.

LVT and HVT state of the FeFET

3 bit flash ADC 

Segment and ADC Layout 

Layout of the column segment

Processing Element For Neural Network Acceleration


