

ANDANTE AI FOR NEW DEVICES AND TECHNOLOGIES AT THE EDGE

Simulation framework for energy and latency in multi-core neuromorphic architectures

Stefano Traferro (IMEC-NL)

CONTENTS

SENSim - High level simulator for SENeCA, Imec-NL's large scale neuromorphic platform

- Introduction to the SENeCA architecture
- Purpose of the simulator
- Structure of the simulator
- Simulation model and processing
- Parameters of the simulator
- Experimental results
- Conclusions

Scalable Energy efficient Neuromorphic Computing Architecture

3

Ο

Using off-chip memory.

- - Scalable
 - Tiling.

- Reduced interrupt overhead.
- Flexible and efficient use of resources.

• Programmable neuron model in C.

- Optimized event-driven core I/O

• Supports for online learning.

Optimized interconnect

RISC-V NPE controller

- Low latency Multicasting
- - Chiplet.

INTRODUCTION TO THE SENECA ARCHITECTURE

ANDANTE

> PURPOSE OF THE SIMULATOR

SENSim: SENeCA Simulator

• Purpose

- Architectural exploration
 - Interconnect, Asynchronous/Synchronous execution, Flow-control, Neuron models, ...
 - Benchmarking of emerging memory technologies, e.g. NVM, HBM, ...
- Emulation of the scaled-up platform before silicon realization
 - Not possible in single FPGA.
 - Too slow in low level simulation.
- Abstract the hardware for
 - Early application optimization.
 - Iterative close loop mapping optimization.

Provides

- Relative power estimation (memory access, operations, ...).
- Processing latency.
- Status of the cores, event-queues, idle times, ...

4

 \bigcirc

STRUCTURE OF THE SIMULATOR

= layer(layer_type='input', layer_shape=[28*28], name='input')

L = layer(layer_type='dense', neuron_type='SigmaDelta', threshold=[0], act_fun='ReLU', layer_shape=[1024], name='dense1')

Core

confide

I.build(output_layers=(L1,))

L1.build(weight_tensor=weights[0], bias_tensor=0, output_layers=(L2,))

L2.build(weight_tensor=weights[1], bias_tensor=0, output_layers=(L3,))

Hardware aware SNN simulator

Definition of the SNN layers and connectivity

2 = layer(layer_type='dense', neuron_type='SigmaDelta', threshold=[0], act_fun='ReLU', layer_shape=[128], name='dense2') L3.build(weight_tensor=weights[2], bias_tensor=0, output_layers=(0,)) 3 = layer(layer_type='dense', neuron_type='SigmaDelta', threshold=[0], act_fun=None, layer_shape=[10], name='dense3') = layer(layer_type='output', layer_shape=[10], name='output') O.build() queue_depths = [16,16] Definition of the CI = core(name='CI', loc=[0,0,0]) processing cores C1 = core(name='C1', loc=[1,0,0], queue_depths=queue_depths, N_NPE=4) #build core objects (layer_core_map=None, parameters=None) -- no need to build input/output cores C2 = core(name='C2', loc=[1,1,0], queue_depths=queue_depths, N NPE=4) Core_list = (C1,C2,C3,C4) for core in Core_list: core.build(layer_core_map=layer_core_map, parameters=param) C3 = core(name='C3', loc=[2,0,0], queue_depths=queue_depths, N_NPE=4) C4 = core(name='C4', loc=[2,1,0], queue_depths=queue_depths, N_NPE=4) CO = core(name='CO', loc=[3,0,0]) Core Core Core interconnect example for ideal interconnect: CONNT = interconnect(topology='ideal', layer_core_map=layer_core_map, name='CONN' Definition of the seg1 = interconnect(topology='bus', layer_core_map=layer_core_map, master_cores=[CI], slave_cores=[C1,C2], name='seg1') seg2 = interconnect(topology='bus', layer_core_map=layer_core_map, master_cores=[C1,C2], slave_cores=[C3], name='seg2') seg3 = interconnect(topology='bus', layer_core_map=layer_core_map, master_cores=[C3], slave_cores=[C4], name='seg3') Interconnect seg4 = interconnect(topology='bus', layer_core_map=layer_core_map, master_cores=[C4], slave_cores=[C0], name='seg4') bus_list = (seg1,seg2,seg3,seg4) Core Core Core 5 Core Core Core

confident

Mapping layers to cores

6

Ο

 \square

 \bigcirc

SIMULATION MODEL AND PROCESSING

confiden

- Hybrid event-based and time-step driven
- Pure event-driven simulators are very slow (not scalable)
- Parallel execution model by using time-step & events
 - Each core has its own input event queue and output event queue.
 - At each the time step, the interconnect delivers the generated events in the previous time-step to the destination input queues.
 - At each time step, all cores can process their input events in parallel.
- Time-step limits the temporal resolution
 - In the middle of time-step, the dependencies between cores are ignored.
 - It is user responsibility to trade off the smaller time-step with higher execution time.
- Hybrid step-event execution:
 - Parallelization is possible.
 - The temporal resolution is limited to the time-step.
 - A small time-step results in a closer to fully event-driven execution -> it will be slower.

- Relative time consumption
 - Compared to RISC-V clock period

time per each NPE operation (compare to one RISC-V cycle) self.T NPE = 1# time per each event queue access self.Tfifo = 1

- Time-step duration
 - Unit: one RISC-V clock period

self.time_step= 100

Relative energy/time for the interconnect

time for a single token hop in bus segment self.Ttr = 1# energy for a single token hop self.Etr = 0.4# energy for sending a bit of data for one bus leg self.Ebus = 1# time for sending a flit of data for one bus leg, put 0 for fully synchronous bus self.Tbus = 0

• Type of flow control

- # flow control mode in the interconnect
 - free : without flow control (No back pressure)
- strict: with back-pressure (no packet loss allowed) self.flow control='strict'

9

 \bigcirc

PARAMETERS OF THE SIMULATOR

• Event format

• Coordinate list

 Compressed Sparse Channel https://en.wikipedia.org/wiki/Sparse_m atrix # Format of event in the platform (time-stamp is only exists for si # Only in simulation for dense layers [H,W]=[0,0], Source layer is # in HW we may have extra fileds in the header (like number of flit # Compressed Sparse Channel format (time-stamp, Source Layer (optio self.flit_width = 32 #number of bits per flits self.max_event_flits = 1 # limit the max number of flits per event self.spike_per_flits = 1 # number of [C,Value] per each flit self.header_flits = 0 # number of flits for the header [Source Layer

Neuron evaluation Synchronization type

Bit width of the variables

sync_type: type of synchronization
- TimeStep Async: All neurons in the core will be evaluated once in a evaluation time-step

Async: Neurons can fire anytime

- TimeStep_flag Async: Only updated neurons during the previous time step will be evaluated self.sync_type='TimeStep'

self.evaluation_time_step= 10000

PARAMETER OF THE SIMULATOR

confiden

Neuron Processing Cores

Parameters:

- Size of the input/output event queues
- Number of Neural Processing Elements (NPE)
- Geometrical location in the chip (3D)
- **Attributes:**

11

- Queue occupancy
- Accumulated Energy consumption

ANDANTE 1st WORKSHOP ON BENCHMARKING July 2nd, 2021

- Accumulated idle times
- Total event loss

queue

Event-based processor

NPE controller

Parameters:

Interconnect

Topology (ideal, PS-NOC, Segmented BUS)

PARAMETER OF THE SIMULATOR

Attributes:

confide

4 layer fully-connected SNN trained for MNIST dataset: Network model.

 $28 \times 28 \rightarrow 1024FC \rightarrow 512FC \rightarrow 256FC \rightarrow 10FC$

Accuracy: 0.9873

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 784)]	0
dense (Dense)	(None, 1024)	803840
dense_1 (Dense)	(None, 512)	524800
dense_2 (Dense)	(None, 256)	131328
dense_3 (Dense)	(None, 10)	2570
Total params: 1,462,538 Trainable params: 1,462,538 Non-trainable params: 0		

DNN converted to SNN using DeltaDNN conversion method.

I.8k neuronsI.462M parameters

confident

4 layer fully-connected SNN trained for MNIST dataset: Core allocation.

- LI (5 cores)
 - I024 neurons
 - 784k synapses
- L2 (4 cores)
 - 512 neurons
 - 512k synapses
- L3 (2 core)
 - 256 neurons
 - 128k synapses
- L4 (I core)
 - 10 neurons
 - 2.5k synapses

confide

Input

- Convert first 9 test digits of MNIST to delta events.
- 100 cycles rest time between events.
- 100k cycles rest time between frames.

- Default parameters:
 - Time step = 100 cycles.
 - Flow Control = Strict (no packet loss allowed).
 - Single flit event with size of 32b.
 - Neurons evaluate every 10,000 cycles.
 - Weights=4b, States =16b, Outputs =1b.
 - Input/output queue depth = 16.
 - Number of NPEs per core = 4.

	7	2	/	0	4	1	Ч	٩	5
Start (k cycles)	0	100	200	300	400	500	600	700	800
End (k cycles)	11	124	218	321	424	518	618	721	824

confiden

ANDANTE 1st WORKSHOP ON BENCHMARKING July 2nd, 2021

confider

Packet loss: No packet is lost due to strict flow control. ... but it results in push-back \rightarrow Idle times.

C00 packet loss: 0, idle time(k cycles): 1229 C01 packet loss: 0, idle time(k cycles): 1229 C02 packet loss: 0, idle time(k cycles): 1229 C03 packet loss: 0, idle time(k cycles): 1230 C04 packet loss: 0, idle time(k cycles): 1234 C10 packet loss: 0, idle time(k cycles): 854 C11 packet loss: 0, idle time(k cycles): 855 C12 packet loss: 0, idle time(k cycles): 855 C13 packet loss: 0, idle time(k cycles): 854 C21 packet loss: 0, idle time(k cycles): 584 C22 packet loss: 0, idle time(k cycles): 585 C32 packet loss: 0, idle time(k cycles): 1391

L3

L4

L2

confiden

confide

confident

Increasing the number of NPEs from 4 to 16: Relative dynamic energy. consumption

confider

confider

Increased the input FIFO depth from 16 to 1024: Output neurons' cumulative 721041495 sum of the output events.

ANDANTE 1st WORKSHOP ON BENCHMARKING July 2nd, 2021

- Simulation framework for energy and latency estimation in multi-core neuromorphic architectures.
- Highly parametrizable.
- Allow wide architecture and resource allocation exploration.

• Next steps

- Improve accuracy integrating characterization data from actual designs.
- Improve runtime to handle larger NN models.
- Integrate the simulator with a resource mapper to get optimal mappings.

confide

THANK YOU

Next presentation: Kay Bierzynski, "Consideration of the real world in use case-based benchmarking"

6 ANDANTE 1st WORKSHOP ON BENCHMARKING July 2nd, 2021

26

 \square

Ċ