

# **ANDANTE Use Cases**

ANDANTE aims to validate and evaluate the applicability of the neuromorphic technologies for various application domains, which are essential for the future of European competitiveness. Five domains were selected involving 13 use cases in total. These domains are Digital Industry, Digital Farming, Transport and Smart Mobility, Healthcare and Digital Life. A short overview of the use cases addressed by domain is given here.







al trv

Digital Farming



Transport and Smart Mobility





Digital Life



## Use Case 1.1

### Indoor Positioning, Recognition and People Counting

#### Description

Indoor positioning recognition and people counting for smart laboratory/factory applications (e.g. robot co-working)

#### Challenges

- Real time computation
- Scaling to handle input of multiple sensors

#### Positioning vs State of the Art

Existing solutions are too slow to fulfill the safety requirement of a smart factory/laboratory

**Partners** IFAG, EESY, TUD, FHG, HEI



# **Digital Farming**

## Use Case 2.1

### Autonomous Weeding System

#### Description

- Crops and weeds detection
- <u>Intra-row</u> weeding
- Mechanically: alternative to chemical weeding
- Autonomous: limiting human intervention

#### Challenges

• Computation in real-time

• High precision needed to differentiate crops and weeds

#### Positioning vs State-of-the art

To date, for most crops, only inter-row mechanized/autonomous weeding solutions exists

#### Partners

Bordeaux-INP, CEA and STGNB





## Use Case 2.2

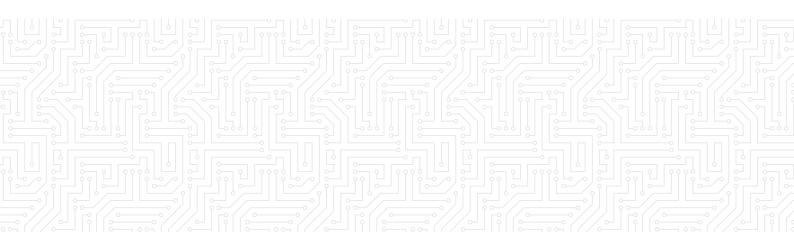
#### Tomato pests and diseases forecast

#### Description

Pest and disease detection model for the tomato agriculture industry.

#### Challenges

- Collecting enough and good quality data
- Time-series analysis for forecasting
- Model selection and development for edge devices


#### Positioning vs State-of-the art

State-of-the-art solutions do not resort to image analysis with ANNs, which produce many false positive events.

#### Partners

CCTI, Italagro, TPRO-Tech., CEA, STGNB





# **Transport and Smart Mobility**



### Use Case 3.1 Drones/USV

#### Description

Detection, classification and segmentation of high-altitude images using either ANN, SNN or hybrid technology

#### Challenges

- Real time computation
- High resolution inputs
- Power consumption

#### Positioning vs State-of-the art

Existing solutions are not compatible with drone constraints

Partners Thales, CEA, STGNB



### Use Case 3.2

#### **Underwater Acoustic Signal Classification**

#### Description

The ocean soundscape is a continuously changing mosaic of sounds that originate from various sources. This is of primary interest to recognize in real time the components of the soundscape.

#### Challenges

Real time computation

• Low power

#### **Positioning vs State-of-the art** Long-term monitoring Real time communication with shore

Partners ALSEAMAR, CEA, STGNB, Synsense

### Use Case 3.3

### 3D Object Detection and Classification of Road Users based on LiDAR and camera

#### Description

Object detection on lidar point clouds that will be fused with camera semantic image data implemented on ANDANTE Platform

#### Challenges

- Real time computation with received sensor data (bandwidth bottlenecks)
- Scaling to handle input of multiple sensors

#### Positioning vs State-of-the art

No fusion of both sensors/sensor data yet done on neuromorphic hardware

**Partners** Valeo, CEA, STGNB, UZH



# **Transport and Smart Mobility**

### Use Case 3.4 **Robust Autonomous Landing**

#### Description

Four critical functionalities are considered: 1. image-based runway relative localization for navigation,

2. image registration for navigation,

- 3. foreign object detection on runway,
- 4. robust communications.

#### Challenges

Real time computation

 Adaptation of large networks to efficient hardware without sacrificing performance levels

#### • Learning on the edge

#### Positioning vs State-of-the art

Many smaller aircraft cannot permit energy cost of large number of conventional AI algorithms in standard hardware, which on the other hand, are necessary to enable autonomous operations.

#### Partners

BR&T-E, Gradiant, TVES, CARTO



### Use Case 3.5 Path Planning for Autonomous steering

#### Description

Continuously calculate trajectories, based on deltas in world map, avoid intersects, while optimally steering the vehicle, e.g. by solving many diff equations

#### Challenges

100Hz world map update rates and <10ms latency  $\rightarrow$  huge comp. loads Small form-factor (<200x200mm) and power consumption (<2W)

#### Positioning vs State-of-the art

- Reduce power by 100x over SoA
- Reduce latency by 10x over SoA

### Partners

GML, Valeo



ARTICULATING RADARS



n laser sensors that ct fixed and moving objects



SHORT-RANGE RADARS

# Healthcare

## Use Case 4.1

## Multi-modal image processing and device tracking in medical X-ray

#### & ultrasound images

#### Description

Navigating a medical device like a Mitral Clip to the right location in the heart is challenging and requires accurate and intuitive image guidance.

#### Challenges

- Detection accuracy  $\rightarrow$  placement of device
- $\bullet$  System latency  $\rightarrow$  eye-hand coordination

#### Positioning vs State-of-the art

Benchmark the SNN version of the detection algorithm against an implementation in state of the art GPU HW

Partners PMS, and imec-NL

## Use Case 4.2

### Ultrasound acquisition or processing

#### Description

Lung ultrasound can detect healthy/unhealthy (Covid-19, Pneumonia) patients. We create a neural network to automatically detect healthy/unhealthy lungs

**Challenges** Make NN fit on the two platforms

#### Positioning vs State-of-the art

Automatic detection Need low power consumption for mobile ultrasound

Partners PRE, imec-NL and GML



# ᆕᆁᇛᆏᅨᇣᆖᆳᆁᇛᆑᅨᇣᆖᆳᅴᇛᇭᅨᇣᆖᆳᅴᇛᆑᇵᇣᆖᆳᆡᇛᆑᆥᆙᆖᆣᆰᇉ

# Use Case 4.3

### **Glucose Monitoring**

#### Description

Apply SNN algorithms to high-frequency sensor data to classify different glucose level in water dilutions.

#### Challenges

To distinguish standard human body glucose concentrations

#### Positioning vs State-of-the art

Leverage the faster computation of the SNN to reach accurate results of the glucose level using less time and energy resources

#### Partners EESY, IFAG



# **Digital life**

### **Use Case 5.1** Consumer Auditory Processing

**5.1.1:** Continuous audio scene classification. The audio environment is monitored continually, to assist in selecting a noise reduction scheme appropriate for the environment.

**5.1.2:** Audio event detection: Continuous monitoring of audio signals for pre-defined trigger events, such as glass break (for security purposes) or distress call (for health monitoring purposes).

#### Challenges:

Continuous real time computation

• Low-latency (for 5.1.2), low-power requirements

**5.1.3:** Multi-microphone auditory processing: A low-power sensory processing task designed for multiple simultaneous input channels (i.e. a microphone array), to assist in noise reduction in smart home devices.

Challenges:

- Continuous real time computation
- Low-power requirements

5.1.4: Voice Activity Detection: Monitoring of audio scene for detection of voiced speech which acts as a wake up signal for smart devices.
5.1.5: Key-Word-Spotting: Spot words like "Alexa" or "Siri" directly at microphone via tinyML.

#### Challenges:

- Continuous real time computation
- · Low-latency, low-power requirements
- Low false-reject and false-accept rate requirements

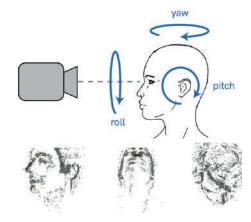
Partners: Synsense, UZH, FhG, IFAG, STGNB



#### אין ונאיידע באיין איידע בא איידע באיין איי

### Use Case 5.2

Vision -based human computer interaction application


#### Description

Glance detection for mobile hand-held devices, to be used as a smart wake-up trigger

#### Challenges

Low-latency and low-energy requirements Low false-reject rate requirements

Partners Synsense, UZH, CSEM, STGNB

