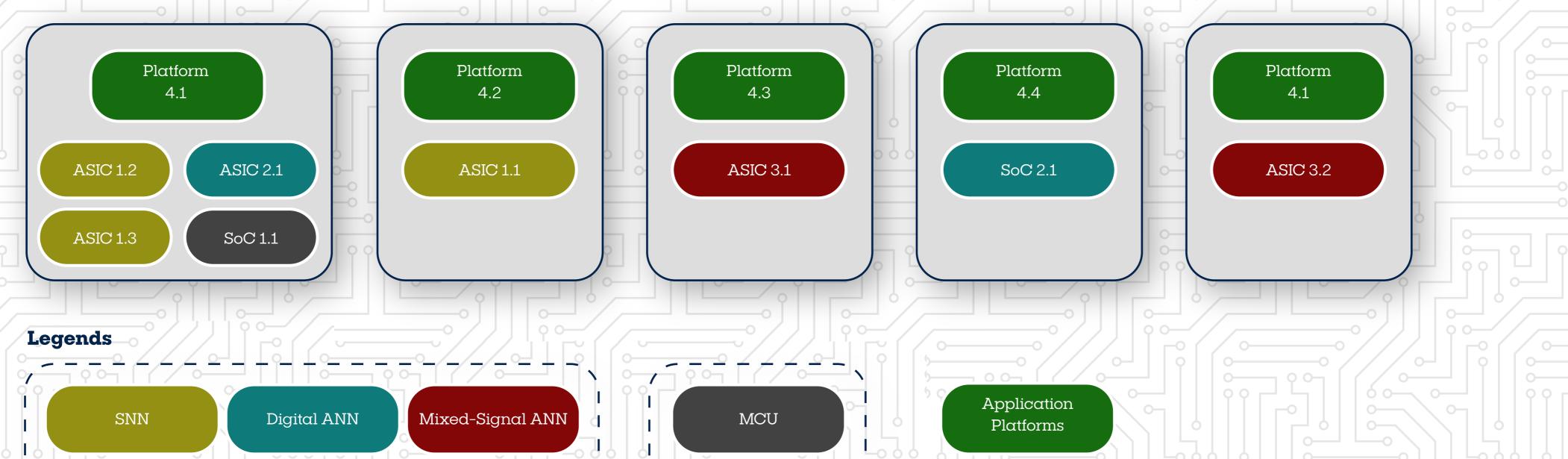
V Accelerators

ANDANTE Design and Implementation of Neuromorphic ASICs and Platforms for Edge Computing Application Solutions


Objectives

- Design of neuromorphic accelerators (ANN and SNN) for edge computing solutions
- Validation of accelerators in dedicated platforms for various applications domains
- Evaluation of platforms and accelerators performances through realistic use cases

Hardware Challenges

- Managing the complexity of different ASIC design
- technologies
- Integration of neuromorphic accelerators and sensors for various applications in the same platform Achieving high energy-efficiency

Main Components and Platforms for efficient Edge computing Solutions

Neuromorphic Accelerators for Edge Computing Solutions

	AI Components	ANDANTE ID	Description	Technology	Design Owner	
	Mixed-signal SNN	ASIC 1.1	Multi-ASIC for exploration of parallelized and distributed SNN algorithms	28 nm CMOS	Infineon	
	Mixed-signal SNN	ASIC 1.2	Multi-core targeting low-dimensional signal representations, such as auditory signals, vibrations, or bio-signals not related to machine vision	28 nm FDSOI	University of Zurich	
	Front-end	ASIC 1.3	Audio front-end performing acoustic inference sensing tasks: acoustic feature extraction (AFE) and classification	40 nm	SynSense	
	Digital ANN	ASIC 2.1	Feature extractor circuit to address image classification, segmentation and detection applications	22nm FDX	CEA	
0	Digital CNN	SoC 2.1	Neural Compute Engine (NCE) targeting NN acceleration for smart vision applications in digital life domain	22nm FDX	CSEM	
	Mixed-signal ANN	ASIC 3.1	Inference accelerator with a multi-core architecture using analog in-memory computing; targeting voice activity detection (VAD)	22nm FDX	Fraunhofer	
	Mixed-signal ANN	ASIC 3.2	Analogue neuronal network (aNN) for tinyML applications. To be evaluated in the context of one-key-word-spotting for a limited amount of accents	28nm CMOS with RRAM	Infineon	
	MCU	Soc 1.1	Microcontroller STM32 aiming to identify best tradeoff between SoC features and functionality, having a direct impact on the silicon area and final cost	28 nm or lower	STMicroelectronics	

Host

Evaluation Platforms for Various Edge Computing Applications

Platform/ board	Short Descripti	on	Associated Components	Associated Domains and Use Cases	Contributors	
4.1	STM32-based hybrid neuromorphic platform co perform complementary and efficiently AI featu Designed to support a variety applications in di mobility, and digital life domains	ires.	SoC 1.1, ASIC 1.2,Digital Farming: UC2.1, UC2.2 Transport and Smart Mobility: UC3.1, UC3.2, UC3.3, UC3.4 Digital life: UC5.1, UC5.2	CEA, STMicroelectronics, SynSense, Televes, University of Zurich		
4.2	A Spiking Neural Microcontroller (SNMC) platfo radar/optical sensor applications	orm intended, for instance, for	ASIC 1.1	Digital Industry: UC1.1 Healthcare: UC4.3	Infineon	
4.3	Includes a mixed-signal ASIC and controller/pe instance for voice activity detection	eripheral units, suitable for	ASIC 3.1	Digital Industry: UC1.1 Digital life: UC5.1.4	Fraunhofer	
4.4	Provides effective interface between SynSense camera with low latency and low power consu human-computer interaction		SoC 2.1	Digital life: UC5.2	CSEM, SynSense	
ichie ASIC an	An Analog Neuronal Network Microcontroller (An Analog Neuronal Net	ANMC) board; only intended for Next Steps Mid-term • Detailed design specifications • Implementation of ASIC SoCs and platforms	Long • Val plat	ASIC 3.2 Digital life: UC 5.1.5 Inf Long-term • Validation of hardware (ASICs, platforms) • Integration of tools and softwar		
	ations based on use case needs vel design specifications		bs, • Delivery of hardware platforms to WP5 use cases implementation			